
Introduction 

“Word”, according to Semitic language word formation process, is described as the combination of 

two morphemes which are the root, and the pattern. The root of a word, is should only consist of 

three consonants, called the radicals, though they can be longer than this. The pattern on the other 

hand, consists of vowels and at times, consonants too. The Pattern of a word has a “slot” into which 

the root is inserted during word formation. So basically, roots are interdigitated into patterns, and 

then words are formed. The three consonants are respectively inserted into their slots, i.e., the first 

radical goes to the first consonant slot, the second radical goes to the second slot, and same to the 

third. 

We focus on extraction of Hebrew and Arabic words. There have been programs designed to help in 

word extraction in the above two languages. However, these programs have largely relied on 

constructing large scale lexicons which are intensively laborious. Lexicons are morphological 

analyzers. We therefore provide a learning approach to word extraction that is machine oriented. 

This approach can be used by people with limited or no linguistic knowledge and helps in 

identification of roots of scientific words. The approach automated the identification process, which 

in turn reduces bottlenecks experienced by listing a lexeme’s roots and patterns.  

Buckwatter’s Arabic morphological analyzer (2002 software Documentation) ignores the use of 

patterns and roots in word formation, and instead, uses word stems in identifying lexicons. 

Identification of a word root is a complex process that needs training and understanding. This is 

mainly because the Semitic derivation and morphological inflection are complex and difficult to 

understand, and the orthography is also peculiar and adverse. However, it is very important to first 

identify the word root and this process can not be ignored. 

The Hebrew morphological analyzer provides a root and pattern combination for other languages 

unlike in Arabic where the root is only important in morphological analysis because dictionaries are 

written by roots. Roots are important as they explain the etymological processes of a word within a 

language and other subsequent languages. They also carry word meanings which are however 

difficult to understand. Therefore information on roots can be used for computational applications. 

A practical system that extracts roots in both Hebrew and Arabic is available online at: 

http//cl.haifa.ac.il/projects/roots/index.shtml. The above system helps in both scientific linguistic 

research and practical applications. It also includes resources on Semitic languages and can extract 

morphemes that are not contiguous, from their respective surface forms. It also addresses the 

Semitic languages’ non concatenate morphemes. 

Experiments are carried out below to show that using this application is possible even with limited 

linguistic knowledge, and that it can improves classification results, which would however be very 

incorrect without the approach. 

2. Linguistic background 

To offer an example form in the Hebrew roots for word formation, consider g.d.l, k.t.b, and r.s.n as 

roots, to correspond to patterns haCCaCa, hitCaCCut and miCCaC. Note that “C” is the pattern 

slots. When the roots are respectively inserted into their patterns, the words formed respectively will 

be, hagdala, hitgadlut, migdal, haktaba, hitkatbut, miktab, har$ama, hitra$mut, and 

mir$am. Morph-phonological changes take place in each word once the root and pattern are 



combined. This change is a complex process, as in the above example, in the second pattern, 

hitCaCCut, if the root consonant is t or d; then d.r. $ + hitCaCCut brings, out hiddar$ut. This also 

happens when the first radical is s or $; s.d.r. + hitCaCCut brings histadrut. Semi vowels in a root 

are assimilated with vowels, e.g., q.w.m. + haCCaCa brings haqamma. The semi vowels / root 

consonants like w or y are always absent in the resulting word form. The Hebrew word formation id 

complicated for a number of reasons; the Hebrew orthography does not specify most vowels e.g., 

a, and e are not explicated, o and u are not distinguished and many i vowels are not specified. Some 

single letters are used as both vowels and consonants, like w, used as both o and u, and also as a 

consonant v, I is used as i (vowel), and y (consonant). The Hebrew orthography also dictates that 

certain language particles like prepositions, coordinating conjunctions, certain subordinating 

conjunctions and definite articles should all be attached to the words that immediately come after 

them. Therefore a form like mhgr will be read as “immigrant”, m-hgr, as “hagar”, and m-h-

gr ,”foreigner”. The script does not determine if the first m is part of the pattern, roots or is a 

preposition. 

The second reason why the Hebrew word formation is complex is because it has twenty two letters 

which are all consonants. This means that tri-consonantal roots are twenty two, though they are 

drawn down to a smaller number by phonological constraints. This is because roots whose first and 

third radicals are similar are very rare. A compilation of roots from the dictionary and the Zdeqa 

Paradigm table helps in the estimation of the total numbers of Hebrew roots, which are estimated to 

be two thousand, one hundred and fifty two(2,152). Most of these roots are regular, but are 

constrained in weak paradigm, i.e., their roots consonants change in certain patterns. As an example, 

i. or n will be chosen as the first consonant, w or I will follow, I will be third; and their second and 

third consonants are identical. Considering a pattern like hCCCh, regular roots like p.s.q forms 

hpsqh, while irregular root like n.p.l, i.c.g, q.w.m and g.n.n will respectively form; hplh,hcgh,hqmh, 

and hqnh. Note that in the first and second examples, n or I which is the radical is missing. In the 

third example, the w radical is missing, and in the last example, one radical is omitted. A form like 

hC1C2h can have different roots like n.C1.C2, C1.w.C2, C1.i.C2 or i.C1.C2. Most Hebrew and 

Arabic words do not have roots because they are not formed through root and pattern language 

morphology. Because of this, the word is either loan words, or short functional and frequent words. 

Loan word is usually longer than their original Semitic words. 

The Hebrew script is very ambiguous, hence very difficult to understand.. With the machine 

approach, this ambiguity is reduced because lexemes of a word share the same root. Word context 

must be considered in order to identify its root. As an example, $mnh can be read as “fat” when its 

root is $.m.n, or “count” when the root is m.n.i. The above example ignore word context, therefore 

the results lack design. 

3. Data methodology 

3.1 Machine Learning framework. 

We employ the use of SNoW as a learning environment, to identify root through machine learning 

techniques, together with Winnow as an update rule. SNoW is an online classifier, tailored to help 

learning in situation where information sources are very large and confusing. It is highly used, in 

addition to the current classifier, used in NLP. SNoW‘s extensions include the regularization, proper 

multi-class classification handling, and algorithms. SNoW’s successful use includes speech tagging, 

information extraction and shallow parsing. It also has three versions for linear algorithms namely, 

Perceptron, Winnow, and Naïve Bayes. 



3.2 Data and Evaluation 

To carry out evaluation, a corpus of fifteen thousand (15,000) Hebrew words was aged for the sake 

of training and testing. Out of this, only nine thousand seven hundred and fifty two were annotated. 

This is because, in Hebrew, frequent words like prepositions do not follow the root and pattern word 

formation paradigm, hence, are excluded from the experiment. One hundred and sixty eight (168) 

roots were further eliminated, to remain with five thousand, two hundred and forty two annotated 

words. The eliminated roots contained more than three consonants, hence their elimination. The 

below tables (table 1) shows root ambiguity or word types. 

 

Number of roots 

 

 

1 2 3 4 

 

 

Number of word types 

 

 

4,886 335 18 3 

 

 

 

 

 

 

Table 2 shows root distribution of the 5,242 word types. 

 

Paradigm 

 

 

Number 

 

 

Percentage 

 

 

R1=i 

 

 

414 

 

 

7.90 

 

 

R1=w 

 

 

28 

 

 

0.53 

 

 

R1=n 419 7.99 



 

 

 

 

 

 

R2=1 

 

 

297 

 

 

5.66 

 

 

R2=w 

 

 

517 

 

 

9.86 

 

 

R3=h 

 

 

18 

 

 

0/19 

 

 

R3=i 

 

 

677 

 

 

12.92 

 

 

R2=r3 

 

 

445 

 

 

8.49 

 

 

Regular 

 

 

3,061 

 

 

58.41 

 

 

R1 is the ith radical for statistical reliability. 

Cross evaluation was done ten times for every classification task and the annotated corpus were 

divided into two sets; the training set, consisting of four thousand eight hundred (4800) words and a 

test set, consisting four hundred and forty two (442) words. The training set was used to tune 

parameter (d), and once this was done, the results were reported by training and testing. 

An example is a word type, with all the possible roots. The system produces one or more candidates 

for each example. i.e., for each example, tp will be the number of all the correct candidates 

identified y the systems, fp, the number of candidates with no correct roots, and fn, as roots not 

produced by the system. Recall, precision, and F score will therefore be defined as; tptpfp , precision 



as tptpfn and F-score as 2×recall×precision; to get the overall F Score, all words obtained are macro 

averaged. 

Six human subject, who were Computer science graduates, native Hebrew speakers and with no 

linguistic background were asked to perform the above task, to illustrate how difficult and complex 

it is. They were asked to identify all the possible roots for the words in a list of two hundred non 

context words. Their average precision was 83.52%, recall at 80.27% and the F score at 81.86%. 

This low performance was deduced to be as a result of lack of word context, and the ambiguity of 

weak paradigms. 

3.3 Feature and design 

SNoW’s main advantage is that it utilizes feature vectors represented, rather than the Boolean 

vectors. The following features are used to characterize a word; 

1. Letter position, i.e., the first, second, or third letter of the word could be a, the word length is 

however limited to twenty. 

2. Letter biagrams, which is independent of its location. 

3. Prefixes 

4. Suffixes. 

3.4 Linguistic resources 

This experiment’s main objective was to demonstrate limited linguistic knowledge towards Machine 

learning, to an NLP task. The following resources were used for both Arabic and Hebrew; 

A list of roots 

List of prefixes and suffixes 

Corpora annotated with roots 

Process knowledge, i.e., weak paradigms in word formation 

The above sources do not however constitute methods for root identification. 

4. Naïve Classification Methods 

4.1 Direct Prediction 

To experiment with simple baseline, classifiers were performed in order to establish a baseline. Two 

experiments were performed, dubbed A, and B. in experiment A, a classifier was trained to learn 

roots as single units. The disadvantage of this approach lies on the scarcity of training data, together 

with the target sets. In this experiment, the results were as follows; precision was 45.72%, recall 



44.37% and F score 45.03%, after ten fold validation. The experiment was the repeated using a 

different organisation of data, and the accuracy was close to 0%. 

4.2 Decoupling the problem 

In experiment B, the problem was divided into three tasks, and three classifiers were trained 

privately to take on the task, and learn each root consonant after which, the results were later 

combined. Targets in all the tasks are twenty two, which is same as the number of Hebrew 

alphabetical letters. In this experiment, there was sufficient data, unlike in experiment A. All 

classifiers performed well, though the method ignores interdependence of targets. There was a 

difference in recognition of the first and third radicals as well as the second one, as expected. The 

most difficult case was when w, or i, was presented as the second radical. 

With the above combination, an F score of 52.84% was achieved. To demonstrate the difficulty of 

the problem another experiment was carried out, and the results showed that both Naïve methods 

were unsuccessful. 

5. Combining Interdependent classifiers. 

Adding linguistic constraints 

The above experiments lacked linguistic knowledge, hence the poor performance. It is important 

that all radicals are included in any inflected form of a word in this model, known as sequential 

model; there was a slight improvement in the performance of SNoW as it was combined with 

Linguistic knowledge. The F score was hence, 58.89%. 

Sequential combination 

A natural approach to improve the above results was to combine SNoW,s outcomes via a Markovian 

approach. The approach is used in part of speech tagging, shallow parsing, and entity recognition. 

When the experiments are done with this approach, with more training data, better results are 

yielded as compared to the naïve methods. Some models include the HMM models, and the PMM 

model of Punyakanok od Roth. The sequential model is however simplistic and causes poor 

performance, with an F score of 37.79%. this is probably because the model is biased, and causes 

the system to abandon SNoW’s choices, and instead chooses worse candidates that perform better 

globally. E.g., SNoW correctly identifies mqrn as the best candidate for the root, q.r.n, but because 

of p(R3=r/R2=r) which is 0.066, and greater than p(R3=n/R2=r), which is 0.025, q.r.r is instead 

produces as the root. 

Some letters in Arabic and Hebrew cannot appear in a sequence due to phonetic restrictions. For 

example, if the first radical is “s”, then it can not be followed by z,c,or e as radicals. 

To provide better results, HMM approach was extended , following the PMM model of Punyakanok 

and Roth. In an example with the word w, where a classifier R1, is already trained,the classifier’s 

predictions are a1, a2, a3…..,ak. With confidence scores of c1, c2 c3..,ck respectively,( keeping in 

mind that the maximum value is 22), for each value a1(1<i<k), that are predicted by R1. Another 

classifier, R2, is run when R1 is a1. then the value of i is checked. i.e, i runs from 1 to k. this gives 

the best sum of the two classifiers with confidence measures for R1 and R2 as a1. using the results 



of R2, the same evaluation is carried out on R3. the value that maximizes R3’s confidence is then 

selected, by identifying the root that maximizes all the three clasifers, and yields better results.  

Learning biagrams 

In this method, root biagrams are learned, instead of learning the roots as single units, as in the 

previous methods. The potential root number is reduced, hence making it simpler and easy to learn 

and use. 

Combining classifiers using linguistic knowledge 

A function called “the scoring function” is introduced to estimate the probability of a candidate 

being the root of a word. This function classifies a candidate as good, bad, or average, depending on 

its likelihood of being the root. And therefore produces three different values. 

Error analysis 

With the above experiments, it was clear to understand the main sources of human errors. Humans 

have root identification problems when the root paradigm is weak, or when the word can be read in 

more than one way. The above methods for root identification are internationally used, in 

conjunction with the local classification tasks. Applying constraints in the scoring function improves 

the results in two ways; the importance of the global inference method is that it improves the global 

decisions of root identification, and at the same time, improves the local classification tasks. The 

most dominant constraint an observed in the experiments is that a candidate root can occur in a list 

of roots, making it difficult to identify three correct roots. The system used in the experiments also 

exhinited the same problems. Its performance on the regular paradigms was much superior than to 

the overall performance. Secondly, it was also unable to distinguish between different several roots. 

The above problems are illustrated by perfoming additional experiments. In one experiment, words 

with regular roots are tested versus those with irregular roots, and those tha are “mixed”, i.e, at least 

one regular roots. In another experiment, 200 “hard” words were extracted from a corpus. Hard 

words are those whose root characters are missing, or because of metathesis, their characters are 

transposed. Some errors noted include; a case where the system produces many roots in which only 

one is correct., e.g, the word hmtndbim, “volunteer”, with an irregular root n.d.b, the system 

produces as many as five roots for the same word, e.g, n.d.b, i.t.d.,d.w.b, i.h.d, and i.d.d.. however in 

this list, i.t.d. and i/h/d should not be produced at all. This is a problem which is very difficult to 

correct. 

The table below shows error analysis for weak paradigms. 

 

Paradigm 

 

 

F score 

 

 

R1=i 70.57 



 

 

 

 

R1=n 

 

 

71.97 

 

 

R2=i/w 

 

 

76.33 

 

 

R3=i 

 

 

58.00 

 

 

R2=R3 

 

 

47.42 

 

 

Extension to Arabic 

As much as Arabic and Hebrew as Semitic Languages have the same morphological systems, roots 

in Arabic are more difficult to learn compared to Hebrew because of the following reasons;  

Arabic has 28 letters with approximately 40 characters, compared to Hebrew’s 22 alphabetical 

letters. 

Related to the above point, Hebrew has a higher pattern number, which are almost twice as those in 

Hebrew. 

i and w are the only letters in Hebrew which can intervene between radicals, whereas in Arabic, the 

letters are so many ( y,w, A, t and wA) can all intervene between radicals r1 and R2, while y, w, A, 

and A can intervene between r2 and r3. in an experiment for learning Arabic roots, a corpus of 

31,991 word types was produced. A stand alone classifier was then trained to identify eacg root 

radical. This was done through; location of letters, suffixes, prefixes, and letter biagrams. The results 

are presented in the table below. R1, R2. and R3 collums show the results of each of the three 

classifiers, while “root” colum is the combination of the three classifiers. 

Accuracy of Radical identification in Arabic 
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Precision 

 

 

86.02 

 

 

70.71 

 

 

82.95 

 

 

54.08 

 

 

 

 

Recall 

 

 

80.84 

 

 

80.29 

 

 

88.99 

 

 

68.10 

 

 

 

 

F Score 

 

 

87.89 

 

 

75.20 

 

 

85.86 

 

 

60.29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The classifiers were later combined using linguistic knowledge on Arabic word formation process. 

This function check two issues; 

If a root candidate is the correct root for a word, then it should occur in the word, or with any of y, 

w, A, t, or wA. 

A candidate cannot be a root of any word in the corpus, if it does not occur in the pre complied root 

list. 

The Arabic results were poorer than Hebrew because of the reasons discussed earlier, raising the 

probability of wrong identification. 

Conclusion 

The word formation process is basically a combination of a root, and a pattern, which are the 

morphemes use in this process. In Hebrew and Arabic languages, these are mostly ignored, and in 

place, a word stem is used, making them complex and difficult to understand. This difficulty is 

however not addressed by the available analyzers, facilitating the invention of Machine learning, 

which facilitates root identification, by combining different methods like the part of speech tagging, 

entity recognition, and shallow parsing. Unlike the naïve methods previously depended on, this new 

classifier, called SNoW, makes the whole process easy even for those with limited linguistic 

knowledge. It reduces the number of radicals to be identified, and through the biagram learning, a 

classifier is trained to learn the root radicals instead of the roots themselves. This reduces the labour 



and tiresome process, making the new method most efficient. As it employs the use of a scoring 

function, applying the scoring function’s constraints generally improve the results, and at the same 

time, improve the local classification tasks. 

 


